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SUMMARY

Autophagy is a multistep process in which cyto-
plasmic components, including invading pathogens,
are captured by autophagosomes that subsequently
fuse with degradative lysosomes. Negative-strand
RNA viruses, including paramyxoviruses, have been
shown to alter autophagy, but the molecular mecha-
nisms remain largely unknown. We demonstrate that
human parainfluenza virus type 3 (HPIV3) induces
incomplete autophagy by blocking autophago-
some-lysosome fusion, resulting in increased virus
production. The viral phosphoprotein (P) is neces-
sary and sufficient to inhibition autophagosome
degradation. P binds to SNAP29 and inhibits its
interaction with syntaxin17, thereby preventing these
two host SNARE proteins from mediating autopha-
gosome-lysome fusion. Incomplete autophagy and
resultant autophagosome accumulation increase
extracellular viral production but do not affect viral
protein synthesis. These findings highlight how
viruses can block autophagosome degradation by
disrupting the function of SNARE proteins.

INTRODUCTION

Autophagy is a multistep, conserved process by which cyto-

plasm components, such as damaged organelles and foreign

pathogens, become enveloped into double-membrane autopha-

gosome vesicles and shuttled to lysosomes for degradation

(Tanida, 2011). Two separate, ubiquitin-like conjugation systems

mediate phagophore elongation and the subsequent generation

of a double-membraned autophagosome. The first conjugation

system contributes to the coupling of Atg12with Atg5 for forming

a covalently linked heterodimer, which then recruits Atg16 to

generate phagophores. The second conjugation system couples

microtubule-associated protein 1 light chain 3 (LC3) to the phos-

pholipid phosphatidylethanolamine. Finally, the autophagosome

fuses with a lysosome to form an autolysosome, where the cyto-

plasmic material, organelles, or invading pathogens and the
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inner membrane are degraded. Many proteins required for

autophagosome-lysosomal fusion, lysosomal acidification, and

lysosomal digestion coordinately contributed to degradation

processes.

In recent years, a growing number of studies have suggested

that the infection processes of viruses are closely related to the

autophagy of host cells, and autophagy can serve as innate

immunity and an adaptive immune response against intracellular

pathogens (Deretic and Levine, 2009). In addition, intracellular

pathogens have developed various molecular strategies to

evade or subvert autophagy for their own benefit (Levine,

2005). Many positive RNA viruses exploit the autophagic pro-

cess for viral RNA replication (Wileman, 2007; Wong et al.,

2008). Hepatitis B virus (Sir et al., 2010) and influenza virus

(Gannagé et al., 2009) can block the autophagy process to

enhance viral replication or dissemination. Furthermore, the in-

duction of autophagy also promotes the replication of these

viruses, and the disruption of autophagy results in decreased

progeny virus production.

However, within members of nonsegmented negative-strand

(NNS) RNA viruses, only few viruses, including vesicular stoma-

titis virus (VSV) and measles virus (MeV), have been shown to

induce autophagy. A recent report indicated that innate recogni-

tion of VSV in mouse embryonic fibroblasts (MEFs) via the RIG-I

pathway is negatively regulated by the Atg5-Atg12 conjugate.

Consequently, Atg5�/� MEFs were more resistant to VSV infec-

tion (Jounai et al., 2007). However, another study showed that

VSV infection induced autophagy, which in turn activated the

antiviral response and inhibited viral replication in the model

organism Drosophila, and siRNA knockdown of Atg5 increased

the yield of progeny viruses (Shelly et al., 2009). Joubert et al.

reported that MeV induces autophagy via the engagement of

CD46, a cell-surface receptor required for the entry of various

pathogens (Joubert et al., 2009). Subsequent research further

suggested that both glycoproteins of MeV rapidly induce mem-

brane fusion-mediated autophagy in cells expressing one of the

cellular receptors, and MeV requires this induction for efficient

cell-to-cell spread (Delpeut et al., 2012). Another study also

showed that the C protein of Mev is sufficient to induce autopha-

gosome accumulation through its interaction with immunity-

associated GTPase family M (IRGM), and siRNA knockdown of

IRGM impairsMeV-induced autophagy and viral particle produc-

tion (Grégoire et al., 2011). These data indicate that multiple
nc.
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steps of the autophagy pathway are regulated by paramyxovi-

ruses or other NNS viruses for their own benefit. However, the

detailedmechanisms of howparamyxoviruses regulate the auto-

phagic process during infection remain elusive.

Human parainfluenza virus type 3 (HPIV3) is a member of the

family Paramyxoviridae, order Mononegavirales. During cell

infection, an RNA polymerase complex formed by the RNA-

dependent RNA polymerase large protein (L) and the phospho-

protein (P) transcribes the N-RNA template to generate six

monocistronic mRNAs that are subsequently translated into N,

P, matrix (M) protein, fusion protein, hemagglutinin-neuramini-

dase (HN), and L. The P of paramyxoviruses is a multifunctional

protein and has at least three important functions in RNA

synthesis: (1) it stabilizes and acts as a cofactor of the L, (2) it

mediates specific encapsidation of the viral genomeRNAby pre-

venting the N from binding to cellular RNAs, and (3) it acts as

a bridge to connect the RNA polymerase complex with the

N-RNA template.

HPIV3 is one of the primary pathogens that cause severe res-

piratory tract diseases including bronchiolitis, pneumonia, and

croup in infants and young children. However, no valid antiviral

therapy or vaccine is currently available. Thus, a more complete

understanding of the factors that influence HPIV3 replication and

pathogenesis is therefore necessary to aid in the development of

vaccines and antiviral therapies. In this study, we sought to

determine how the autophagy process is particularly targeted

by HPIV3 and to identify the molecular partners underlying the

execution and regulation of the autophagy process between

the virus and host. We found that HPIV3 infection blocks auto-

phagosome degradation by inhibiting autophagosome-lyso-

some fusion, and that the P is necessary and sufficient for this

inhibition of autophagosome degradation. Furthermore, we also

demonstrated that inhibition autophagosome-lysosome fusion

by the P facilitates extracellular viral production but does not

influence viral protein synthesis or intracellular viral production.

RESULTS

HPIV3 Infection Triggers the Accumulation of
Autophagosomes
To characterize the role of autophagy in the HPIV3 life cycle in

detail, we first sought to determine whether HPIV3 infection trig-

gers autophagy. Since the ratio of LC3-I to LC3-II is regarded as

an accurate indicator of autophagic activity (Kudchodkar and

Levine, 2009), we assessed conversion of endogenous LC3-I

to LC3-II via immunoblotting. At 24 hr after HPIV3 infection,

LC3-II levels were notably increased in LLC-MK-2 (MK2) cells

relative to mock-infected cells and remained constant for

36 hr, whereas the amount of LC3-I decreased at increasing in-

tervals of time following infection (Figure 1A), indicating that

there was a cumulative increase in autophagosome formation

as infection progressed. Similar results were also observed in

HPIV3-infected HeLa cells (Figure 1B), human alveolar adeno-

carcinoma (A549) cells (see Figure S1A available online), and pri-

mary human pulmonary fibroblast (HPF) cells (Figure S1D).

Furthermore, HPIV3 infection led to puncta formation of GFP-

LC3-labeled vacuoles in most MK2 and HeLa cells compared

with uninfected cells (Figure 1C), confirming that HPIV3 infection

indeed induces the formation of autophagosomes. To directly
Cell H
visualize autophagosome formation in HPIV3-infected cells, we

also used transmission electronmicroscopy to observe the ultra-

structure of cells. In the mock-infected MK2 cells, autophagic

vacuoles were rarely observed (Figure 1D); in contrast, in

acidification inhibitors of lysosome degradation, chloroquine

(CQ)-treated MK2 cells, a significant increase of single-mem-

brane autophagic vacuoles was observed, and the cytoplasmic

contents of most of these vacuoles were sequestered (Fig-

ure 1D), Similar results were also observed in CQ-treated

U2OS cells (Chen et al., 2012). More remarkably, the accumula-

tion of numerous large, double-membraned autophagic vacu-

oles containing intact cytoplasmic contents was observed in

HPIV3-infected MK2 cells (Figure 1D), suggesting that HPIV3

infection results in autophagosome accumulation. Taken

together, these data clearly demonstrate that HPIV3 infection

can induce the accumulation of autophagosomes.

HPIV3 Infection Induces Incomplete Autophagy
The accumulation of autophagosomes is an intermediate pro-

cess within the autophagic flux, which reflects the balance

between the rate of their generation and conversion into

autolysosomes. Thus, autophagosome accumulation in HPIV3-

infected cells may reflect three possibilities: (1) virus induces

completed autophagy, (2) the virus simply suppresses basic

autophagic flux, or (3) the virus induces incomplete autophagy.

To elucidate how HPIV3 infection results in the accumulation of

autophagosomes, we first treated mock-and HPIV3-infected

cells (moi = 2) with two acidification inhibitors of lysosome degra-

dation, CQ and bafilomycin A1 (BAF), which can suppress auto-

phagic flux and accumulate autoghagosome. If HPIV3 infection

only suppresses basic autophagic flux, comparable LC3-II levels

will be observed in HPIV3-infected cells and in mock-infected

cells upon CQ/BAF treatment. However, we found that higher

levels of LC3-II were accumulated in HPIV3-infected cells than

in mock-infected cells upon CQ/BAF treatment (Figures 2A and

2B, lanes 2 and 4, and lanes 3 and 5), indicating HPIV3 infection

must induce occurrence of the autophagy (either completed

autophagy or incomplete autophagy). However, when HPIV3-

infected cells (moi = 2) were treated with or without CQ/BAF,

no difference in LC3-II levels was observed (Figure 2C, lanes 1

and 2, and lanes 3 and 4), indicating that HPIV3 infection satu-

rates the function of CQ/BAF for blocking the autophagic flux.

Next, we further analyzed the LC3-II and p62 protein levels in

the HPIV3-infected cells. Previous studies have shown that the

p62 binds to LC3 and that both are degraded in the completed

autophagy process after autophagosomes fuse with lysosomes

(Bjørkøy et al., 2005). We did not observe any degradation of

LC3-II and p62 in HPIV3-infectedMK2 cells until 36 hr after infec-

tion, although more than 80% of the cells were severely cyto-

pathic (Figure 2D). The similar results were also observed in

HPIV3-infected A549 and HPF cells (Figures S1A and S1D). To

exclude possible influence of cellular proteins in virus superna-

tants, MK2 cells were infected with purified HPIV3 for 36 hr,

and the results show that purified viruses also prevent autopha-

gosomes from degradation (Figure S1G). To confirm that HPIV3

infection blocks the fusion of autophagosomes with lysosomes,

we used a tandem reporter construct, mCherry-GFP-LC3;

the GFP of this tandem autophagosome reporter is sensitive

and attenuated in an acidic pH environment by lysosomal
ost & Microbe 15, 564–577, May 14, 2014 ª2014 Elsevier Inc. 565



Figure 1. HPIV3 Infection Promotes the Accumulation of Autophagosomes

(A and B) MK2 and HeLa cells were mock infected or infected with HPIV3. Lysates were evaluated via western blotting (WB).

(C) MK2 and HeLa cells were transfected and infected, and analyzed for GFP-LC3. DAPI (blue) was used to stain nuclear DNA. Scale bar, 10 mm. The number of

GFP-LC3 dots in each cell was counted, and at least 50 cells were included for each group.

(D) Mock-infected, CQ-treated, or HPIV3-infected MK2 cells were processed and analyzed for the accumulation of autophagosome via electron microscopy.

Black arrows indicate autophagic vacuoles.

Error bars, mean ± SD of three experiments. Student’s t test; *p < 0.05; **p < 0.01; NS, nonsignificant. See also Figure S1.
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degradation, whereas the mCherry is not. Therefore, the fusion

of autophagosomes with lysosomes will result in the loss of

yellow fluorescence and the appearance of only red fluores-

cence of mCherry (Klionsky et al., 2012). In HPIV3-infected cells,

many LC3-positive autophagic vacuoles were yellow, indicating
566 Cell Host & Microbe 15, 564–577, May 14, 2014 ª2014 Elsevier I
that autophagosomes did not fuse with lysosomes (Figures 2E

and S1B, left panel), whereas in mock-infected cells there

were few yellow autophagic vacuoles, but a high number of

mCherry-positive autolysosomes remained detectable. As a

positive control, in EBSS-starved cells, which induce a complete
nc.



Figure 2. HPIV3 Infection Induces Incomplete Autophagy

(A and B) MK2 cells were mock infected or infected with HPIV3 for 24 hr, and then treated with CQ (A) or BAF (B). Cell lysates were processed as in Figure 1A.

(C) MK2 cells were infected with HPIV3 for 30 hr and treated with/without BAF or CQ, and then processed as in (A).

(D) MK2 cells were infected with HPIV3 and analyzed via WB.

(E) HeLa cells were transfected with mCherry-GFP-LC3 for 24 hr and then were mock infected or infected with HPIV3 or treated with CQ, or starved in EBSS

medium for 2 hr, and then analyzed for autophagosome. Scale bar, 10 mm. The graph shows the quantification of autophagosomes by taking the average number

of dots in 50 cells.

(F) HeLa cells were transfected and then infected with HPIV3 or starved in EBSS medium for colocalization analysis. Scale bar, 10 mm. The graph shows the

quantification of colocalization by taking the average number of dots in 50 cells.

Error bars, mean ± SD of three experiments. Student’s t test; **p < 0.01; ***p < 0.001; NS, nonsignificant. See also Figure S1.
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autophagy, only part of the LC3-positive autophagic vacuoles

were yellow (Figures 2E and S1B, left panel). Furthermore, we

also tracked lysosomes with lysosome-associated membrane

protein 1 (LAMP1) and LysoTracker red, which stains acidic

organelles such as lysosomes. In HPIV3-infected cells, GFP-

LC3 did not colocalize with LAMP1 or LysoTracker red, whereas

in starved cells many GFP-LC3 colocalized with LAMP1 or

LysoTracker red (Figures 2F; S1B, right panel; and S1E), sug-

gesting that HPIV3 infection indeed blocks the fusion of autopha-

gosomes with lysosomes. Taken together, our results demon-

strate that HPIV3 infection induces incomplete autophagy by

inhibiting the fusion of autophagosomes with lysosomes.

Accumulation of Autophagosomes Promotes
Extracellular Viral Production
Next, we sought to determine whether autophagy machinery

could modulate the replication of HPIV3. We first used BAF to

inhibit the activity of lysosomes to allow for the accumulation

of autophagosomes in the basic autophagy process and rapa-

mycin (RAP), which is a well-known autophagy inducer, to

induce the production of autophagosomes. In cells infected

with HPIV3 at a lower moi of 0.01, the extracellular viral produc-

tion (virions released into supernatants) was significantly higher

in cells treated with BAF and RAP than in nontreated cells, and

viral HN protein expression remained unchanged (Figure 3A);

the effect of BAF or RAP treatment on viability of the cells is insig-

nificant (Figures S2A and S2D), but when higher moi (moi = 2)

was used, BAF failed to increase the extracellular viral yields

because of saturation of blocking autophagosome maturation

by higher moi infection (Figure S2G). These results suggest

that the accumulation of autophagosomes enhances extracel-

lular viral production but not viral protein synthesis. Next, we

treated cells with 3-methyladenine (3-MA), which is a phar-

macologic inhibitor of autophagy and inhibits the formation of

autophagosomes, and evaluated the effect of 3-MA on viral

replication. As shown in Figure 3B, after 48 hr of infection at an

moi of 0.01, the level of endogenous LC3-II decreased and the

extracellular viral production was three times lower in cells

treated with 3-MA than in nontreated cells, whereas HN protein

expression remained unchanged; moreover, toxic effects of

3-MA on cells have not been observed at the concentrations

used in this study (Figures S2B and S2E). These findings suggest

that inhibition of autophagy with 3-MA reduces the extracellular

viral production but does not influence viral protein expression.

Furthermore, we knocked down expression of the key auto-

phagy-related protein Atg5 via siRNA to inhibit the generation

of autophagosomes. The intracellular level of Atg5 protein was

reduced to 90%by siRNA (#104) comparedwith negative control

(Figures 3C, S1C, and S1F), and the effect of siRNA treatment on

viability of the cells is insignificant (Figures S2C and S2F). As

expected, Atg5-knockdown cells lost the ability to accumulate

LC3-II even when infected with HPIV3 (Figure 3D, lanes 6

and 8; Figures S1C and S1F); meanwhile, knockdown of Atg5

did not affect HN protein expression or intracellular viral produc-

tion (virions inside cells) but resulted in a significant reduction in

the extracellular viral production (Figures 3D, S1C, and S1F).

Similar results were obtained in Atg7�/� (Atg7 knockout) MEF

cells infected with HPIV3 (Figure 3E). Taken together, these

results suggest that the accumulation of autophagosomes en-
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hances extracellular viral production but does not affect the syn-

thesis of viral proteins and intracellular viral production. It has

been thought that the M protein of paramyxovirus plays a major

role in the process of virion release (Takimoto and Portner, 2004),

and our unpublished data also shown that M protein alone of

HPIV3 triggers all steps required for the formation and release

of virus-like particles (VLPs) that mimic the process of extracel-

lular viral production. To further explore how the accumulation

of autophagosomes increases extracellular virus production,

we treated cells expressing M protein with BAF or 3-MA and

found that BAF enhanced while 3-MA reduced the release of

VLPs (Figure 3F), suggesting that accumulation of autophago-

somes also increases the release of VLPs, but inhibition of

autophagy decreases the release of VLPs; then we performed

membrane flotation centrifugation assay and found that M

locates both in membrane fractions and nonmembrane fractions

(Figure 3G). BAF treatment significantly enhanced the amount of

M in membrane fractions compared with mock-treated cells,

whereas 3-MA functioned reversely (Figure 3G), suggesting

that accumulation of autophagosomes increases the ability of

M binding to plasma membrane. Furthermore, we also found

that GFP-LC3 colocalized with M in BAF-treated cells (Fig-

ure 3H). Taken together, our results indicate that the accumula-

tion of autophagosomes increases the ability of virions binding to

membranes, thus increasing extracellular viral yield.

P Is Necessary and Sufficient to Induce Incomplete
Autophagy
Next, we sought to determine the mechanism(s) by which HPIV3

infection induces incomplete autophagy. For this purpose, we

transiently expressed N, P, M, F, HN, and L of HPIV3, and P

expression resulted in a significant increase in LC3-II (Figure 4A).

Furthermore, we also observed that the kinetics of P expression

parallel the inhibition of autophagosome maturation in HPIV3-in-

fected cells (Figure S3A). Thoughwe are unable to directly detect

expression of GFP-L by immune blotting, we do observe the

expression of GFP-L by immunefluorescent assay (data not

shown). Furthermore, using CQ-treated cells as positive control,

the number of autophagosomes was remarkably higher when

GFP-LC3 and P were coexpressed than when GFP-LC3 was ex-

pressed alone (Figure 4B), indicating that P can trigger the accu-

mulation of autophagosomes. To confirm that expression of P

can also induce incomplete autophagy, we first treated cells

with CQ or BAF. Levels of LC3-II were higher in the presence

of P than in the absence of P (Figure S3B, lanes 2 and 4; Fig-

ure S3C). However, LC3-II levels did not increase further in the

presence of P upon treatment with CQ (Figure S3B, lanes 3

and 4), indicating that P induces autophagy. Then we sought

to determine whether P can also block the fusion of autophago-

somes with lysosomes. For this purpose, we cotransfected cells

with plasmids encoding mCherry-GFP-LC3 and P, many yellow

dots, which represented GFP- and mCherry-positive autopha-

gosomes observed in cells coexpressing mCherry-GFP-LC3

and P, whereas only some mCherry-positive and GFP-negative

autophagosomes were found in cells expressing only mCherry-

GFP-LC3 (Figure 4C). Furthermore, LAMP1 and LysoTracker

red were also used to track the location of lysosomes, and

we found that GFP-LC3 did not colocalize with LAMP1 or

LysoTracker red in the presence of P (Figure 4D). Similarly, we
nc.



Figure 3. Autophagosome Accumulation Enhances the Extracellulr Viral Yields

(A) MK2 cells were infected with HPIV3 (moi = 0.01) for 24 hr, and treated with BAF or RAP for WB and extracellular viral yields analysis.

(B) MK2 cells were mock infected or treated with 3-MA, and then infected with HPIV3 (moi = 0.01) for 48 hr and analyzed as in (A).

(C) MK2 cells were transfected with siRNAs targeted to Atg5. Lysates were analyzed via WB.

(D) MK2 cells were transfected as in (C) and then were mock infected or infected with HPIV3 (moi = 0.01). Cells were harvested and analysis for WB (right) and

intracellular virions production (left).

(E) Atg7�/� (open bars) and Atg7+/+ (filled bars) MEF cells were infected with HPIV3. Cells were harvested and analyzed for WB and intracellular virion production.

(F) HEK293T cells were transfected with plasmids encoding M and treated with BAF or 3-MA; culture supernatants were used for VLPs assay.

(G) HEK293T cells were transfected and treated as in (F); lysates were analyzed via membrane flotation centrifugation.

(H) HeLa cells were transfected with GFP-LC3 and Myc-M and then treated with BAF. The colocalization of Myc-M and GFP-LC3-positive autophagosomes was

analyzed. Scale bar, 10 mm.

Error bars, mean ± SD of three experiments. Student’s t test; *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S2.
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also found that overexpression of P inhibits autophagosome

maturation in starved cells (Figure S3D) or RAP-treated cells (Fig-

ure S3E). Furthermore, knockdown of P by siRNA also signifi-

cantly decreased autophagosome accumulation during HPIV3

infection (Figures S3F and S3G). Taken together, these data

demonstrate that P is sufficient to induce incomplete autophagy

by blocking the fusion of autophagosomes with lysosomes.
Cell H
P Interacts with SNAP29
Next, we sought to determine the mechanism(s) by which P

blocks the fusion of autophagosomes with lysosomes. We first

screened a HeLa cell cDNA library using P as a bait protein in

a yeast two-hybrid system, and a synaptosome-associated pro-

tein of 29 kDa (SNAP29), which belongs to family of soluble

N-ethylmaleimide-sensitive factor-attachment protein receptors
ost & Microbe 15, 564–577, May 14, 2014 ª2014 Elsevier Inc. 569



Figure 4. P Inhibits the Fusion of Autophagsosome with Lysosomes

(A) HeLa cells were transfected with plasmids encoding P, N, M, F, H, and L for 36 hr; lysates were analyzed via WB.

(B) HeLa cells were cotransfected with plasmids as indicated in the presence of CQ. Cells were analyzed for autophagosome. Scale bar, 10 mm.

(C) HeLa cells were cotransfected with plasmids as indicated and analyzed for autophagosome. Scale bar, 10 mm. The graph shows the quantification of

mCherry+GFP+-LC3-positive autophagosomes by taking the average number of dots in 30 cells. Student’s t test; **p < 0.01.

(D) HeLa cells were cotransfected with plasmids as indicated for colocalization assay. Scale bar, 10 mm. The graph shows the quantification of colocalization by

taking the average number of dots in 30 cells.

Error bars, mean ± SD of three experiments. Student’s t test; *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S3.
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(SNAREs), was found to specifically interact with P (Figure 5A).

Then we performed in vivo coimmunoprecipitation (coIP). As

shown in Figure 5B, HA-SNAP29 coimmunoprecipitated with

Myc-P (right panel, lane 2). We also observed that endogenous

SNAP29 coimmunoprecipitated with Flag-P in HEK293T cells

(Figure 5C, lane 2) and colocalized well with Flag-P in HeLa

cells via immunofluorescence assay (Figure 5D). To further

confirm that SNAP29 interacts with P, we performed an in vitro

GST pull-down assay with GST-fused SNAP29 expressed in

bacteria. GST-SNAP29, but not GST alone, was able to pull

down P (Figure 5E). Taken together, these results confirm that

P and SNAP29 physically and specifically interact in vivo and

in vitro.

Next, to map the critical region of P necessary for its interac-

tion with SNAP29, a series of progressively truncated P mutants

were constructed (Figure 5F, upper panel) and used for coIP

assay. We found that mutant Myc-PDN100 failed to coimmuno-

precipitate HA-SNAP29 (Figure 5F, bottom right panel, lanes

2–5) but still maintained the ability of oligomerization and interac-

tion of PDN100 with N (Figure S4, right panel, lanes 3 and 5),

suggesting N-terminal 100 aa is indeed required for regulating

the interaction of P with SNAP29.
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SNAP29 contains two SNARE motifs (aa 60–112 and aa 206–

258) (Hong, 2005). To map the critical region of SNAP29 respon-

sible for its interaction with P, we also constructed a series of

SNAP29 truncation mutants (Figure 5G, upper panel) and per-

formed coIP assay. The results showed that deletion or trunca-

tion of one of the SNARE motifs of SNAP29 definitely abolished

the interaction of SNAP29 with P (Figure 5G, right bottom panel).

Altogether, these data indicate that both SNARE motifs in

SNAP29 are required for its interaction with P.

P Blocks Autophagosome-Lysosome Fusion by
Inhibiting SNAP29 Interaction with Syntaxin17
Recently, an elegant study showed that SNAP29 is a key adaptor

protein in regulating the fusion of autophagosomes with lyso-

somes by interacting with syntaxin17 (Stx17), which targets

autophagosomes, and VAMP8, which locates in the membranes

of lysosomes (Itakura et al., 2012). Indeed, as previously re-

ported (Itakura et al., 2012), knockdown of SNAP29 by siRNA

caused dramatic accumulation of GFP-LC3 dots (Figure 6A)

and LC3-II in MK2 cells even under normal conditions (Figure 6B,

lanes 2 and 4), suggesting knockdown of SNAP29 inhibits

the fusion of autophagosomes with lysosomes. However, in
nc.



Figure 5. P Interacts with SNAP29

(A) P interacts with SNAP29 in yeast.

(B) HA-SNAP29 was expressed alone or coexpressed with Myc-P. Cell lysates were subjected to IP and analyzed via WB.

(C) HEK293T cells were transfected with plasmid encoding Flag-P. Lysates were subjected to IP and analyzed via WB.

(D) MK2 cells were transfected with plasmid encoding Flag-P and analyzed for colocalization of Flag-P with endogenous SNAP29. Scale bar, 10 mm.

(E) GST or GST-SNAP29 was expressed in bacteria, and lysates containing GST or GST-SNAP29 were used for the binding of HA-P and analyzed via WB.

(F) HA-SNAP29 was expressed as indicated, and the cell lysates were processed as in (B).

(G) Myc-P was coexpressed as indicated, and the cell lysates were processed as in (B). See also Figure S4.
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higher-moi (moi = 2) HPIV3-infected cells, LC3-II levels did not

further increase regardless of whether SNAP29 was knocked

down (Figure 6B, lanes 1 and 3), further suggesting HPIV3 infec-
Cell H
tion is sufficient to block the fusion of autophagosomes with

lysosomes. Furthermore, the accumulation of autophagosomes

via SNAP29 knockdown also resulted in a 4-fold increase of
ost & Microbe 15, 564–577, May 14, 2014 ª2014 Elsevier Inc. 571



Figure 6. Knockdown or Overexpression of SNAP29 Affects Extracellular HPIV3 Yields

(A) MK2 cells were transfected with siRNA for SNAP29 for 48 hr and were transfected with plasmid encoding GFP-LC3 for an additional 24 hr for colocalization

assay. Scale bar, 10 mm. One of three experiments is shown.

(B) MK2 cells were transfected as in (A), and cells were mock infected or infected with HPIV3 for 36 hr and analyzed via WB.

(C) MK2 cells were transfected and infected as in (B), but at an moi of 0.01. Cells were harvested and analyzed for WB and intracellular virion production.

(D) MK2 cells were transfected with siRNAs as indicated for 48 hr, and then cells were mock infected or infected with HPIV3 (moi = 0.01) for 36 hr. Cells were

harvested and analysis for WB and intracellular and extracellular virions production.

(E) HeLa cells were transfected with plasmid encoding Myc-SNAP29 for 24 hr and infected with HPIV3 at an moi of 0.1, 0.5, or 1 for 48 hr, and then processed

as in (C).

Error bars, mean ± SD of three experiments. Student’s t test; *p < 0.05; **p < 0.01; ***p < 0.001; NS, nonsignificant. See also Figure S5.

Cell Host & Microbe

HPIV3 Induces Incomplete Autophagy

572 Cell Host & Microbe 15, 564–577, May 14, 2014 ª2014 Elsevier Inc.



Cell Host & Microbe

HPIV3 Induces Incomplete Autophagy
extracellular viral yields in lower moi (moi = 0.01) (Figure 6C), but

not in higher moi (moi = 2) (Figure S5) HPIV3-infected cells,

whereas HN expression and intracellular viral yield were not

affected. However, double knockdown of Atg5 and SNAP29,

which has no significant effect on viability of cells (Figures S2C

and S2F), completely cut off the effect of single silence of

SNAP29 on extracellular viral production, and resulted in compa-

rable extracellular viral production with single silence of ATG5

(Figure 6D), suggesting that SNAP29 regulates extracellular viral

production only through blocking fusion of autophagosomes

with lysosomes, and silence of ATG5 blocks the early stage of

autophagy, with the result that autophagosomes cannot form.

Furthermore, overexpression of SNAP29 reduced the extracel-

lular viral yield comparedwithmock-transfected cells (Figure 6E).

Altogether, these results shown that SNAP29 has an important

function in regulating the fusion of autophagosomes with lyso-

somes and that the accumulation of autophagosomes increases

extracellular viral yield.

Both HPIV3 infection and P expression can block the fusion of

autophagosomes with lysosomes; meanwhile, P interacts with

SNAP29, which is the key adaptor protein in regulating the fusion

of autophagosomes with lysosomes. Thus, we sought to deter-

mine whether P blocks the fusion of autophagosomes with lyso-

somes by disrupting the function of SNAP29 in HPIV3-infected

cells. For this purpose, we first infected HEK293T cells, which

coexpressed Myc-SNAP29 and HA-Stx17, and as shown in Fig-

ure 7A, infection with HPIV3 greatly weakened the association of

SNAP29 with Stx17 (right bottom panel, lanes 2 and 3) but did

not influence the interaction of SNAP29 with VAMP8 (Figure 7B,

right bottom panel, lanes 2 and 3), indicating that HPIV3 infection

suppresses the interaction of SNAP29 and Stx17, which is crit-

ical for the fusion of autophagosomes with lysosomes.

Furthermore, expression of HA-P also remarkably inhibited the

interaction of SNAP29 with Stx17 (Figure 7C, right bottom panel,

lane 3), but expression of HA-PDN100, which lost the ability

to interact with SNAP29, failed to inhibit the interaction of

SNAP29 with Stx17 (Figure 7C, right bottom panel, lane 4).

Consistent with these data, HA-PDN100 was also unable to pro-

mote the accumulation of LC3-II (Figure 7D, lanes 2 and 3).

Furthermore, transmission electron microscopy was used to

observe the ultrastructure of HeLa cells expressing HA-P or

HA-PDN100. Higher-magnification images clearly showed dou-

ble-membraned vesicles with cytoplasmic contents, which are

indicative of autophagosomes, in HeLa cells expressing HA-P,

but not in cells expressing HA-PDN100 (Figure 7E). By quanti-

fying autophagic vesicles, we found that the number of autopha-

gosomes was six times greater in HeLa cells expressing HA-P

than in those expressing HA-PDN100 (Figure 7E).

Because the two SNARE motifs of SNAP29 are both required

for its interaction with P (Figure 5G), we next sought to

determine whether P blocks the interaction of SNAP29 with

Stx17 by competitively binding SNARE motifs. Two mutants,

SNAP29DN120 and SNAP29DC80, in which one of the two

SNARE motifs was deleted, were chosen as the representatives

for coIP assay, which showed that neither SNAP29DN120 nor

SNAP29DC80 interacted with Stx17 (Figure 7F and Figure S6A,

right bottom panel, lanes 2–4), suggesting that the two SNARE

motifs are both required for the interaction of SNAP29 with

Stx17. To confirm that P blocks the fusion of autophagosomes
Cell H
with lysosomes by competitively inhibiting the interaction of

SNAP29 with Stx17, we gradually increased the expression of

SNAP29 and found that the P-induced LC3-II accumulation

was reversed (Figure S6B, lanes 3–6). Taken together, our

data show that the two SNARE motifs of SNAP29 are both

required for SNAP29-P interaction and SNAP29-Stx17 interac-

tion, and that P of HPIV3 blocks the fusion of autophagosomes

with lysosomes by inhibiting the interaction of SNAP29 with

Stx17.

DISCUSSION

Adaptor protein SNAP29 is indispensible for regulating the fusion

of autophagosomes with autolysosomes through SNAP29-

Stx17 interaction and SNAP29-VAMP8 interaction (Itakura

et al., 2012). From our findings, we can conclude that the

HPIV3 infection or P induced incomplete autophagy by blocking

SNAP29-mediated fusion of autophagosomes with lysosomes

(Figure 7G). We also showed that N-terminal 100 aa of P is indis-

pensible for the competitive binding of two SNARE motifs of

SNAP29 with Stx17 for efficient blockage of autophagosomes

fusion with lysosomes (Figure 7G), which finally facilitates extra-

cellular viral production, but not protein synthesis and intracel-

lular viral production.

As a SNARE protein, SNAP29 was initially identified by yeast

two-hybrid screening and was localized predominantly in intra-

cellular membrane structures (Steegmaier et al., 1998). Due to

its ubiquitous cytoplasmic expression and interactions with a

broad range of syntaxin proteins, SNAP29 has been considered

to be capable of participating in various intracellular transport

steps (Hohenstein and Roche, 2001). A recent study shows

that SNAP29 interacts with the BLOC1 complex that is respon-

sible for specialized cargo sorting in the endosome-to-Golgi

retrograde trafficking pathway (Gokhale et al., 2012). In addition,

it has also been reported that SNAP29 may inhibit SNARE com-

plex disassembly (Su et al., 2001). Furthermore, a recent study

greatly expands the function of SNAP29, which suggested that

SNAP29 regulates fusion of autophagosomes with lysosomes

through SNAP29-Stx17 interaction and SNAP29-VAMP8 inter-

action (Itakura et al., 2012).

Our results show that HPIV3 infection or the expression of P

can induce incomplete autophagy. Although we observed that

P plays a key role in the induction of incomplete autophagy, other

viral proteins or ingredients may synergistically contribute to

this process in viral infection. Others have speculated that auto-

phagy promotes viral replication through multiple mechanisms

including inhibiting the innate immune response (Estrabaud

et al., 2011; Ke and Chen, 2011), stimulating protein translation

(Dreux et al., 2009), and generating energy or membrane struc-

tures required for viral replication (Heaton and Randall, 2010).

In our study, we discovered that autophagosome accumulation

enhanced the extracellular viral yields of HPIV3 (Figure 3A).

Furthermore, inhibition of autophagy reduced the extracellular

viral yields (Figures 3B and S2H), but protein composition and

infectivity of released virions were not affected (Figures S2I–

S2K). Similarly, other studies have suggested that HCV RNA in

cells induces an incomplete autophagic response that promotes

viral RNA replication (Sir et al., 2008) and that siRNA knockdown

of Atg7 decreases the production of infectious HCV particles,
ost & Microbe 15, 564–577, May 14, 2014 ª2014 Elsevier Inc. 573



Figure 7. P Blocks the Interaction of SNAP29 with Stx17

(A) HEK293T cells were transfected as indicated and were mock infected or infected by HPIV3. Lysates were processed as in Figure 5B.

(B) HEK293T cells were transfected as indicated and infected as in (A). Cell lysates were processed as in (A).

(C) HEK293T cells were transfected as indicated, and cell lysates were processed as in (A).

(D) HEK293T cells were transfected as indicated, and cell lysates were analyzed via WB.

(E) HeLa cells were transfected as indicated and then processed and analyzed for the autophagosome. Rectangle indicates autophagosomes.

(F) HeLa cells were transfected as indicated, and cell lysates were processed as in (A).

(G) Model of HPIV3 infection or P induced-incomplete autophagy.

Student’s t test; *p < 0.05. See also Figure S6.
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with no apparent effects on the expression of viral RNA and

proteins (Tanida et al., 2009); coxsackievirus B3-induced auto-

phagy can enhance viral replication, and the inhibition of

autophagosome formation via pharmacological compounds or

siRNA knockdown of autophagy-related genes can reduce viral

production. However, blocking the fusion of autophagosomes

with lysosomes by silencing LAMP2 significantly increased virus

titer (Wong et al., 2008).
574 Cell Host & Microbe 15, 564–577, May 14, 2014 ª2014 Elsevier I
To confirm that HPIV3-induced incomplete autophagy only

contributes to extracellular viral yields rather than intracellular

virion production, we also assessed intracellular viral yields

and consistently observed a more substantial effect on extra-

cellular viral yield than intracellular viral yields when accumula-

tion of autophagosome was induced or inhibited (Figures 3D,

3E, 6C, and 6D), suggesting that HPIV3 does not require a func-

tional autophagy pathway for transcription and replication. The
nc.
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positive correlations between the decreased accumulation of

autophagosomes and decreased extracellular viral yield led us

to conclude that the autophagosome accumulation induced dur-

ing HPIV3 infection increases extracellular viral yields, and we

hypothesize that HPIV3 subverts the constituents of the cellular

autophagy pathway to form membranous scaffolds for the intra-

cellular transportation or budding of virions. A previous study re-

vealed a similar phenomenon for nonenveloped viruses such as

poliovirus: a larger effect on extracellular viral yield than intracel-

lular viral yield was observed after siRNA knockdown of Atg12

and LC3, indicating that poliovirus has a selective effect on viral

release and that poliovirus may use a double-membraned auto-

phagosome-mediated pathway as a nonlytic mechanism for viral

release (Jackson et al., 2005; Taylor et al., 2009). Thus, the intra-

cellular accumulation of autophagosomes in HPIV3-infected

cells (like poliovirus-infected cells) may provide a nonlytic

release pathway for the extracellular delivery of cytosolic con-

tents in the absence of cell lysis. Similarly, some enveloped

viruses, such as HIV, have also been suggested to egress from

human macrophages via the fusion of multivesicular bodies

with plasma membrane, rather than by directly budding from

the cell surface as in HIV-infected T cells (Pelchen-Matthews

et al., 2003; Nydegger et al., 2003; Ono and Freed, 2004). What-

ever HPIV3 employs lytic or nonlytic release pathway for release

of virions, this raises one question: how do virions of HPIV3 con-

nect with autophagosomes?We further found that accumulation

of autophagosomes increases the VLPs release of M protein and

ability of M binding to membranes, and M protein colocalizes

with autophagosome, suggesting that autophagosomes may

sequester and facilitate the virions binding to membrane for

extracellular viral production. It has been suggested that the

accumulation of autophagosomes may contribute to auto-

phagy-mediated secretory functions in response to viral infec-

tion and autophagy machinery might also be involved in the

regulation of intracellular trafficking, secretion, or exocytosis

(Deretic et al., 2012).

Because the fusion of autophagosomes with lysosomes is a

main step in the autophagic flux, many regulators of autophago-

some maturation and degradation, such as UVRAG, Rubicon,

Beclin-1, presenilin-1, and valosin-containing protein, have

been identified (Liang et al., 2008; Matsunaga et al., 2009; Lee

et al., 2010; Tresse et al., 2010). Viruses might disrupt this pro-

cess for their benefit by interfering with the function of these reg-

ulators. For example, M2 protein of influenza virus A blocks the

fusion between autophagosomes and lysosomes via its interac-

tion with Beclin-1 in MEF cells (Gannagé et al., 2009); Nef protein

of HIV-1 also suppresses autophagic maturation and causes the

accumulation of autophagosomes by interacting with Beclin-1 in

U937 cell lines (Kyei et al., 2009). Similarly, NSP4 protein of rota-

virus binds to autophagosomes and inhibits their fusion with

lysosomes to enhance viral RNA replication, but critical regula-

tors to which NSP4 binds have not yet been identified (Berkova

et al., 2006). Here, we found that the interaction of P with

SNAP29 through two SNARE motifs of SNAP29 disrupts the

fusion of autophagosomes with lysosomes for efficient extracel-

lular viral production. Intriguingly, we found that P competitively

binds to two SNARE motifs of SNAP29 with Stx17. Because

other studies have suggested that other SNARE proteins are

also critical for regulating the fusion of autophagosomes with
Cell H
lysosomes (Fader et al., 2009; Moreau et al., 2011) and for re-

cruiting the LC3 to the site of autophagosome formation (Nair

et al., 2011), these SNARE proteins might also be targets for

various viruses to block the autophagy maturation for their own

benefit.

In summary, we demonstrate that P of HPIV3 interacts with a

key adaptor protein, SNAP29, to block autophagosome degra-

dation for efficient budding. Our study introduces a mechanism

by which viruses interfere with function of the SNARE protein

to disrupt autophagy maturation.

EXPERIMENTAL PROCEDURES

SDS-PAGE and WB

Cells were harvested and lysed with 100 ml of lysis buffer for 30 min at 4�C. The
supernatants were collected by centrifugation for 30 min at 4�C. Protein con-

centration was determined based on the Bradford method using the Bio-Rad

protein assay kit. Equal amounts of protein were separated by 12% SDS-

PAGE and electrophoretically transferred onto a nitrocellulose membrane

(GE Healthcare). After blocking with 5% nonfat milk in PBST, membrane

was incubated with the primary antibodies, followed by HRP-conjugated

goat anti-rabbit or anti-mouse IgG.

Immunofluorescence Analysis

Cells were fixedwith ice-cold 4% (wt/vol) paraformaldehyde for 20min in room

temperature, and then cells were incubated with 0.1% Triton X-100 for 20 min

and blocked with 3% BSA for 30 min. Specific primary Abs were added and

incubated for 1 hr, and cells were then washed with 1% BSA for three times,

followed by incubation with the goat anti-rabbit IgG Rhodamine or goat anti-

mouse IgG fluorescein secondary antibody for 1 hr. DAPI was used to stain

the nucleus for 5 min.

Yeast Two-Hybrid Screening

Plasmids encoding DNA binding domain (BD) fused with P of HPIV3 were

transformed into Saccharomyces cerevisiae AH109 (type a) and were used

as a bait protein to screen a human HeLa MATCHMAKER cDNA library cloned

into a pGADT7-Rec vector (Clontech) according to the manufacturer’s proto-

col. The specificity of the interaction was confirmed by retransforming AD-

SNAP29 into Y187 (type a) yeast cells and remating with BD-P expressed in

AH109 yeast cells. The mating cultures were coated onto SD/�Trp/�Leu plate

for diploid cell growth and onto SD/�Trp/�Leu/�His/�Ade plate containing

X-a-Gal for detecting blue colony growth to select protein interaction.

In Vivo Coimmunoprecipitation

HeLa cells were infected with vTF7-3 at an moi of 3 for 1 hr, and transfected

with the appropriate plasmids with Lipofectamine 2000 (Invitrogen) according

to the manufacturer’s protocol; HEK293T cells were transfected with the

appropriate plasmids by standard calcium phosphate precipitation method.

Cells were harvested and lysed with lysis buffer (50 mM Tris-HCl [pH 7.4],

150 mM NaCl, 1% [wt/vol] Triton X-100, 1 mM EDTA [pH 8.0], 0.1% [vol/vol]

SDS, and protease inhibitor cocktail) for 30 min. The suspernatants were

collected by centrifugation at 13,000 rpm for 30 min at 4�C and precleared

by incubated with protein G Sepharose 4 Fast Flow beads for 1 hr at 4�C
with rotation. After centrifugation, specific primary antibodies were added in

supernatants and incubated for 4 hr at 4�C with rotation, and then the protein

G Sepharose 4 Fast Flow beads were added and incubated overnight at 4�C
with rotation. Beads were collected and washed three times with washing

buffer (5% [wt/vol] sucrose, 5 mM Tris-HCl [pH 7.4], 5 mM EDTA [pH 8.0],

500 mM NaCl, 1% [vol/vol] Triton X-100). Then the beads were boiled at

100�C for 5 min in 2 3 SDS protein loading buffer and analyzed by WB.

GST Pull-Down Assays

GST or GST-SNAP29was expressed in BL21 cells, treated with the lysis buffer

provided by a ProFound GST pull-down protein-protein interaction kit (Pierce),

and incubated for 30 min at room temperature. After centrifugation at

13,000 rpm for 30 min, equal amounts of supernatants were mixed with P
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from HeLa lysates. GST pull-down assays were performed with a ProFound

GST pull-down protein-protein interaction kit according to the manufacturer’s

protocol.

Transmission Electron Microscopy

MK2 cells was infected by HPIV3 for 36 hr at an moi of 2 or treated with CQ

(50 mM) for 6 hr; HeLa cells were transfected by pCAGGS-HA-P or PDN100

for 36 hr, and then cells were fixed with 2.5% glutaraldehyde and 4% parafor-

maldehyde in 0.1 M sodium phosphate buffer (pH 7.4) for 2 hr at room temper-

ature. The cells were harvested and fixed with 2.5% glutaraldehyde on ice for

2 hr followed by postfixation in 2% osmium tetroxide, and then cells were

dehydrated with sequential washes in 50%, 70%, 90%, 95%, and 100%

ethanol. Areas containing cells were block mounted and thinly sliced.

Autophagy Analysis

For RAP (100 nM), CQ (50 mM), or BAF (100 nM), cells were treated for 6 hr

before harvest. For 3-MA (5 mM), cells were pretreated for 2 hr and treated

again after absorption of HPIV3 until the samples were harvested. For starva-

tion assay, cells were washed three times with PBS and then cultured in EBSS

for 2 hr.

Virus-like Particle Assays

HEK293T cells were transfectedwith indicated plasmids, 2ml culture superna-

tants were recovered and loaded onto 2 ml 20% (w/v) sucrose solutions and

centrifuged at 35,000 rpm for 2 hr at 4�C, and pellets were resuspended in

PBS at 4�C overnight for WB.

Membrane Flotation Centrifugation

HEK293T cells were transfected with indicated plasmids for 48 hr and were

Dounce homogenized in cold TNE buffer (50 mM Tris-HCl, 150 mM NaCl,

2 mM EDTA, 0.1% 2-mercaptoethanol and protease inhibitors cocktail) for

20 min. The supernatants were collected after centrifugation at 3,000 rpm

for 30 min at 4�C and mixed with sucrose solution to obtain 73% final concen-

tration. A total of 1 ml of mixture at the bottom was layered with 3 ml 65% (w/v)

and 0.8ml 10% (w/v) sucrose solutions and centrifuged at 28,800 rpm for 16 hr

at 4�C. Eight fractions (0.6 ml/fraction) were collected from the top to bottom,

and proteins were extracted with methanol/chloroform for WB.

Statistical Analysis

Data are expressed as means ± SD. The significance of the variability

between different groups was determined by two-way ANOVA tests of

variance using the GraphPad Prism software (version 5.0). p < 0.05 was

considered statistically significant, and p > 0.05 was considered statistically

nonsignificant.
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