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Obesity is associated with a state of chronic low-grade inflamma-
tion characterized by infiltration and activation of immune cells in 
metabolic organs such as adipose tissue1,2. Overnutrition-induced 
metabolic inflammation in adipose tissue has been proposed to be 
critical in the pathogenesis of insulin resistance and type 2 diabe-
tes3. Adipose tissue is composed of multiple types of tissue, includ-
ing white, brown and beige fat, which play pivotal roles in metabolic 
homeostasis4. Various innate and adaptive immune cells communicate 
with adipocytes and thereby maintain adipose function5. In particular, 
ATMs are critical in orchestrating metabolic inflammation6–10. As the 
major effector cells mediating both adipose and systemic inflamma-
tion, ATMs respond to metabolic cues and are present in a spectrum 
of functionally distinct activation states, thereby exerting profound 
regulatory effects on metabolism6,8–11. In obesity, ATMs have been 
found in the so-called ‘crown-like’ structure (CLS) around dying 
adipocytes, which display a predominantly proinflammatory clas-
sically activated (M1) phenotype1. ATM M1 polarization is thought 
to promote insulin resistance and type 2 diabetes1,6,9,10. Whereas in 

the lean state, ATMs are uniformly dispersed, primarily exhibiting an 
anti-inflammatory alternatively activated (M2) phenotype1,7,12. ATM 
M2 polarization, induced by eosinophil-derived type 2 cytokines (for 
example, the interleukins IL-4 and IL-13), enhances activation of BAT 
and browning or beiging of WAT13–15, thereby modulating adaptive 
thermogenesis and energy expenditure.

The ER is a critical organelle in cellular nutrient sensing and 
handling2. An overload of protein folding can trigger ER stress and 
consequently activate the unfolded protein response (UPR). Three 
UPR pathways coordinately restore ER homeostasis and affect many 
aspects of cellular function16–18. IRE1, the ER-resident transmem-
brane protein kinase and endoribonuclease, is the most conserved 
ER stress sensor18,19. Mammalian IRE1α is activated by ER stress 
and consequently can catalyze the unconventional splicing of the 
mRNA encoding the transcription factor X-box binding protein 1 
(XBP1) or can degrade select mRNA species in a process termed 
regulated IRE1-dependent decay (RIDD)18,19. Hyperactivation of 
the IRE1α–XBP1 pathway has been documented in the adipose  
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tissue of obese humans20,21, but whether this hyperactivation is caus-
ally related to energy imbalance remains unknown. Here, we sought 
to test the possibility that during chronic handling of excess nutrients, 
ER stress mechanistically converges with metabolic inflammation 
through ATMs, thereby initiating adipose dysfunction and causing 
dysregulation of glucose and energy metabolism. We found that the 
IRE1α pathway in macrophages regulates a shift in M1–M2 polari-
zation and couples metabolic ER stress to the disruption of energy 
balance through impairing BAT activity and WAT browning.

RESULTS
Myeloid IRE1 ablation prevents diet-induced obesity
We first examined whether ER stress in ATMs accompanies over-
nutrition-induced obesity and metabolic inflammation in adipose 
tissue, such as in visceral epididymal WAT (epWAT) of obese mice 
fed an HFD (Supplementary Fig. 1a,b). Not only in adipocytes but 
also in the stromal vascular fraction (SVF), where resident ATMs are 
enriched1, we observed significantly elevated Xbp1 mRNA splicing 
and higher expression levels of the UPR marker and proinflamma-
tory genes (Supplementary Fig. 1c–f). Moreover, in cells positive 
for the integrin CD11b (CD11b+), which were isolated from SVFs 
of obese mice and largely comprised macrophages, we also detected 
prominently increased Xbp1 mRNA splicing and decreased mRNA 
abundance of two known RIDD-target genes22, Hgsnat and Pmp22, 
along with elevated expression of other UPR markers and proinflam-
matory genes (Supplementary Fig. 1g,h). This finding suggested 
that excessive nutrient handling elicits metabolic ER stress and acti-
vation of the IRE1α branch of the UPR in ATMs in parallel with 
adipose inflammation. To investigate whether the IRE1α pathway 
in macrophages exerts metabolic actions during overnutrition, we 
intercrossed floxed IRE1α (Ern1f/f) mice23 with the Lysozyme 2-
Cre (Lyz2-Cre) line13 to create myeloid-specific IRE1α-knockout 
(Ern1f/f; Lyz2-Cre) mice, in which IRE1α protein expression was 
abolished in bone-marrow-derived macrophages (BMDMs) and 
peritoneal macrophages (pMφ) but remained normal in epWAT and 
subcutaneous WAT (scWAT) (Fig. 1a) as well as in other tissues 
examined (Supplementary Fig. 2a). RT–PCR analysis with primers 
spanning the 121-bp exon 2 of Ern1 that was targeted for deletion 
revealed that IRE1α was efficiently ablated in BMDMs and pMφ, and 
was partially ablated in neutrophils but not in T cells positive for the 
monomorphic co-receptor CD4 (CD4+) or B cells (Fig. 1b). In com-
parison to their Ern1f/f counterparts, Ern1f/f; Lyz2-Cre mice showed 
no defective developmental phenotypes (Supplementary Fig. 2b,c) 
and had insignificant differences in body weight but lower body fat 
mass when they were fed a normal chow (NC) diet (Fig. 1c,d and 
Supplementary Fig. 2d). Remarkably, these mice were completely 
resistant to HFD-induced obesity, exhibiting much lower body 
weight and adiposity without significant changes in their lean mass  
(Fig. 1c,d and Supplementary Fig. 2b,e–g). Ern1f/f; Lyz2-Cre mice 
after HFD feeding also displayed a more beneficial epWAT phenotype 
with smaller adipocytes (Fig. 1e), along with significantly decreased 
hyperleptinemia and normal serum adiponectin levels (Fig. 1f), thus 
indicating improved adipose function. Moreover, HFD-fed Ern1f/f; 
Lyz2-Cre mice showed greatly decreased hyperinsulinemia (Fig. 1g) 
and markedly improved insulin sensitivity (Supplementary Fig. 2h) 
and blood glucose control (Fig. 1h). In addition, Ern1f/f; Lyz2-Cre 
mice did not exhibit HFD-induced hypertriglyceridemia, hyperc-
holesterolemia or hepatosteatosis (Fig. 1i–k and Supplementary  
Fig. 2i). These data demonstrated that IRE1α in myeloid cells 
couples overnutrition to the development of obesity and obesity- 
associated metabolic deterioration.

Myeloid IRE1 abrogation increases energy expenditure
We next determined whether myeloid IRE1α deficiency affects 
energy balance. Ern1f/f; Lyz2-Cre mice and their Ern1f/f counterparts 
had similar daily food consumption during NC or HFD feeding 
(Supplementary Fig. 2j) and showed comparable absorption of die-
tary lipids when they were maintained on an HFD (Supplementary  
Fig. 2k). However, oxygen consumption, when normalized to the lean 
mass, was significantly higher in Ern1f/f; Lyz2-Cre mice than in Ern1f/f 
littermates fed either NC or an HFD (Fig. 2a,b), although physical activ-
ities were similar between these two groups (Supplementary Fig. 2l).  
In addition, core body temperatures were also higher in HFD-fed 
Ern1f/f; Lyz2-Cre mice (Fig. 2c). Thus, loss of IRE1α in myeloid cells 
resulted in increased energy expenditure.

To determine whether the effect of myeloid IRE1α deficiency on 
energy expenditure might be attributable to enhanced heat produc-
tion, we first examined the activation of BAT, the major organ that 
dissipates energy through the action of mitochondrial uncoupling 
protein 1 (UCP1) during adaptive thermogenesis4,24. In the BAT of 
HFD-fed Ern1f/f; Lyz2-Cre mice, compared with their Ern1f/f counter-
parts, much lower lipid-droplet content (Fig. 2d) and higher expres-
sion of UCP1 protein were observed (Fig. 2e). Ern1f/f; Lyz2-Cre mice 
fed either NC or an HFD had significantly elevated expression of key 
thermogenic genes in BAT, thus further suggesting that these mice 
had a greater BAT thermogenic capacity (Fig. 2f). In parallel with 
higher levels of UCP1 protein, BAT from HFD-fed Ern1f/f; Lyz2-Cre 
mice also had increased levels of phosphorylated STAT3 (p-STAT3) 
transcription factor and elevated expression of tyrosine hydroxylase 
(TH) (Fig. 2g), the rate-limiting enzyme in biosynthesis of catecho-
lamines, which activate both brown and beige fat, thereby generating 
heat13,14. Given the critical function of the inducible beige fat within 
scWAT in adaptive thermogenesis and maintenance of energy bal-
ance4,24, we examined whether beige adipocytes were also involved. 
Indeed, scWAT from HFD-fed Ern1f/f; Lyz2-Cre animals exhibited 
significantly elevated Ucp1 mRNA and UCP1 protein expression lev-
els (Fig. 2h,i), thus indicating enhanced beige-fat activation.

To confirm the effect of myeloid IRE1α abrogation on adaptive 
thermogenesis, we subjected mice to cold stress (4 °C). Ern1f/f; Lyz2-
Cre mice maintained their body temperatures at higher levels than 
Ern1f/f animals after cold exposure for 3 d (Fig. 3a) but showed no 
significant changes in BAT weight (Fig. 3b). However, cold stress 
decreased BAT lipid-droplet levels (Fig. 3c) and increased BAT UCP1 
and TH expression (Fig. 3d,e) as well as norepinephrine content  
(Fig. 3f) to a greater extent in Ern1f/f; Lyz2-Cre mice, thus indicating 
higher BAT activity accompanied by augmented biosynthesis of cat-
echolamines. In addition, scWAT of Ern1f/f; Lyz2-Cre mice subjected 
to cold exposure also exhibited markedly enhanced remodeling, as 
evidenced by both increased induction of multilocular UCP1-express-
ing beige adipocytes (Fig. 3g,h) and robust augmentation of cold-
induced UCP1 expression and norepinephrine production (Fig. 3i,j). 
Together, these results demonstrated that the loss of myeloid IRE1α 
promotes energy expenditure through enhancing the thermogenic 
activity of both brown and beige fat.

To determine whether the effect of myeloid IRE1α deficiency on 
adaptive thermogenesis stems primarily from its actions in ATMs, we 
used liposomal clodronate, which selectively depletes macrophages 
but not neutrophils through induction of apoptosis25, even in the WAT 
of obese mice26. Indeed, administration of clodronate-containing  
liposomes into the scWAT of Ern1f/f or Ern1f/f; Lyz2-Cre mice 
resulted in marked decreases in the mRNA expression of the mac-
rophage marker F4/80 (encoded by Adgre1) (Fig. 4a), thus indicat-
ing efficient ablation of ATMs in scWAT in both groups. Clodronate  
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(TG), cholesterol and free fatty acids (FFA). (j) Representative images of livers from HFD-fed mice (3 images per mouse). (k) Representative images of  
H&E staining of liver sections (4 images per mouse). Scale bars, 200 µm. Hepatic TG content was determined. All data are shown as mean ± s.e.m.,  
*P < 0.05; **P < 0.01; ***P < 0.001 by two-tailed Student’s t test or two-way ANOVA.
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treatment impaired the enhancement of scWAT remodeling (Fig. 4b) 
and greatly diminished the UCP1 induction in Ern1f/f; Lyz2-Cre mice 
after cold exposure (Fig. 4c,d). Hence, these results clearly demon-
strated the critical role of IRE1α-deficient ATMs in promoting WAT 
browning during adaptive thermogenesis.

IRE1α deficiency reverses the M1–M2 imbalance of ATMs
We then considered whether macrophage IRE1α might be coupled 
to metabolic inflammation by mediating a shift in M1–M2 polariza-
tion of ATMs. As compared with their Ern1f/f counterparts, HFD-
fed Ern1f/f; Lyz2-Cre mice exhibited significantly decreased serum 
levels of proinflammatory cytokines such as tumor necrosis factor 
(TNF), IL-1β and the chemokine CCL2 (Fig. 5a); however, they 
produced higher amounts of IL-6 (Fig. 5a), a pleiotropic cytokine 
that exerts either proinflammatory or anti-inflammatory effects. 
Immunohistochemistry also revealed lower numbers of epWAT 
F4/80+ CLS in Ern1f/f; Lyz2-Cre than in Ern1f/f mice after HFD 
feeding (Fig. 5b). The CD11b+F4/80+ cell numbers in epWAT and 
scWAT SVFs, as measured by flow cytometry, were ~58% and ~26% 
lower, respectively, in HFD-fed Ern1f/f; Lyz2-Cre mice (Fig. 5c,d), 
thus indicating dramatically decreased macrophage recruitment in 
WAT. We detected an ~39% decrease in M1-like CD11b+CD11c+ 

cells and an ~161% increase in M2-like CD11b+CD206+ cells in both 
epWAT (Fig. 5e,f) and scWAT SVFs (Fig. 5g,h). Notably, in the set-
ting of NC feeding, SVFs of epWAT from Ern1f/f; Lyz2-Cre mice, 
compared with their Ern1f/f counterparts, had comparable amounts of 
CD11b+F4/80+ cells but considerably increased CD11b+CD206+ cells 
(Supplementary Fig. 3a,b). These results suggest that in the absence 
of excess nutrition, IRE1α ablation does not influence macrophage 
differentiation or recruitment. Moreover, in SVFs of both epWAT 
(Fig. 5i) and scWAT (Fig. 5j) of HFD-fed Ern1f/f; Lyz2-Cre mice, 
gene expression profiling showed robust increases in the expression 
of signature M2-marker genes (Arg1, Chil3, Retnla, Mrc1, Pdcd1lg2 
and Il10)7,12 and significant decreases in the expression of M1 markers 
(Nos2, Il6 and Tnf)1. Additionally, in SVFs of BAT from Ern1f/f; Lyz2-
Cre mice after HFD feeding, M2- but not M1-marker genes were also 
similarly upregulated (Fig. 5k). In agreement with their serum levels 
(Fig. 5a), the expression of proinflammatory adipokines Tnf, Ccl2 and 
Il1b markedly decreased, whereas that of Il6 dramatically increased 
in adipocytes of both epWAT and scWAT (Fig. 5i,j). Next, we exam-
ined whether myeloid IRE1α deficiency blunted HFD-induced adi-
pose inflammation through altering the UPR pathways. In Ern1f/f; 
Lyz2-Cre mice subjected to HFD feeding, there were no significant 
changes in the expression of typical ER stress markers, including Bip 
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(official symbol Hspa5), Chop (official symbol Ddit3) and Atf4, in the 
SVFs or adipocytes of epWAT or scWAT (Supplementary Fig. 3c–f). 
Further, in CD11b+ cells isolated from SVFs, which predominantly 
consisted of CD11b+F4/80+ ATMs (>82% in epWAT, >73% in scWAT; 
Supplementary Fig. 4), elevated levels of the M2-marker protein Ym-1  
(encoded by Chil3) were detected in HFD-fed Ern1f/f; Lyz2-Cre mice 
as compared with their Ern1f/f counterparts (Fig. 5l,m). No appar-
ent alterations in phosphorylation of the initiation factor eIF2α or 
levels of the prosurvival ER chaperone BiP and the heat-shock pro-
tein Hsp90 were observed in isolated CD11b+ cells or adipocytes  
(Fig. 5l,m). Together, these data suggested that macrophage IRE1α 
ablation can unlock its suppressive action in M2 polarization of 
ATMs, thereby reversing HFD-induced M1–M2 imbalance in WAT, 
decreasing adipose inflammation and enhancing energy expenditure. 
Without affecting the ER stress state in adipose tissue, loss of IRE1α in 
ATMs can resolve overnutrition-induced metabolic inflammation.

IRE1 promotes M2 polarization in a cell-autonomous manner
To determine whether IRE1α regulates macrophage polarization in 
a cell-autonomous fashion, we used lipopolysaccharide (LPS) and 
IL-4 stimulation of mouse BMDM in vitro models to mimic M1 
and M2 polarization27, respectively. As assessed with an antibody 
to IRE1α phosphorylated at Ser724 within the activation loop of 
its kinase domain28, LPS treatment increased IRE1α phosphoryla-
tion in BMDMs (Fig. 6a); however, phos-tag gel analysis29 indicated 
that LPS-stimulated IRE1α phosphorylation was distinct from that 
induced by the typical ER stressor thapsigargin (Supplementary  
Fig. 5a). In addition, LPS did not affect eIF2α phosphorylation or BiP 
protein expression (Fig. 6a and Supplementary Fig. 5b). This result is 
consistent with the previously reported finding that Toll-like-receptor 
ligands such as LPS specifically activate the IRE1α pathway in macro-
phages30. In Ern1f/f; Lyz2-Cre BMDMs, compared with control Ern1f/f 
BMDMs, LPS induction of inducible nitric oxide synthase (iNOS) 
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(RT, ~26 °C; n = 4 per group) or at 4 °C for 72 h (n = 10 per group). (a) Core body temperatures of mice maintained at 4 °C. (b) Relative BAT weight 
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per mouse). Scale bars, 30 µm. (e) Immunoblot analysis and quantification of BAT UCP1 and TH protein. α-tubulin is a loading control. (f) BAT 
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Results are presented as mean ± s.e.m., *P < 0.05; **P < 0.01 by two-tailed Student’s t test or two-way ANOVA.
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protein expression was significantly lower (Fig. 6a). Flow cytometry 
analysis showed an ~34% decrease in F4/80+CD11c+ cell number 
from LPS-treated Ern1f/f; Lyz2-Cre BMDMs (Fig. 6b). LPS-induced 
upregulation of Il6 mRNA was also significantly decreased in Ern1f/f; 
Lyz2-Cre cells (Fig. 6c), in agreement with results from previous 
studies showing that IRE1α increases the expression of proinflam-
matory cytokines in macrophages30,31. IL-4 also stimulated IRE1α 
phosphorylation, as detected by the antibody to phospho-IRE1α or 
by phos-tag gel analysis (Fig. 6d and Supplementary Fig. 5c). By 
contrast, IL-4 treatment had no stimulatory effect on eIF2α phos-
phorylation or BiP protein abundance (Fig. 6d and Supplementary 
Fig. 5d), thus suggesting that IL-4 also selectively activates the IRE1α 
branch. In Ern1f/f; Lyz2-Cre BMDMs, compared with Ern1f/f BMDMs, 
IL-4 stimulation of Ym-1 protein was significantly elevated, but there 
were no changes in phosphorylation of the transcription factor STAT6 
(Fig. 6d). Furthermore, IL-4-treated Ern1f/f; Lyz2-Cre BMDMs had an 
~46% increase in CD11b+CD206+ cells (Fig. 6e) and showed robustly 
enhanced expression of signature M2-marker genes (Fig. 6f). These 
results demonstrated that loss of IRE1α was sufficient to promote 
IL-4 induction of M2 polarization while dampening LPS stimulation 
of M1 polarization.

We then sought to assess metabolic cross-talk between M2-polarized  
macrophages and beige adipocytes, and to determine whether such 
cross-talk might be influenced by IRE1α ablation in macrophages. We 
used UCP1-expressing beige adipocytes differentiated from mouse 
preadipocytes32 (Fig. 6g) and cocultured them with IL-4-stimulated 
Ern1f/f; Lyz2-Cre or Ern1f/f BMDMs. Coculture with IL-4-treated 

BMDMs significantly increased the expression of Ucp1 and beige-
adipocyte markers33, including Cd137 (official symbol Tnfrsf9), Ear2 
and Tmem26, in differentiated beige adipocytes (Fig. 6h); moreover, 
IRE1α deficiency robustly enhanced the ability of IL-4-stimulated 
BMDMs to upregulate these signature genes of beige adipocytes  
(Fig. 6h). Thus, IRE1α abrogation augments M2 polarization of ATMs 
and consequently enables more efficient WAT browning.

Next, to explore the mechanisms by which IRE1α promotes M2 
polarization, we performed global gene expression analysis by RNA-
seq on IL-4-stimulated BMDMs. Of the 755 genes significantly upreg-
ulated (>1.25-fold, P <0.05 by two-tailed rank product nonparametric 
method) by IL-4, ~11% were attenuated, and ~10% were further 
enhanced by IRE1α ablation in Ern1f/f; Lyz2-Cre BMDMs. In con-
trast, among the 797 genes significantly downregulated (>1.25-fold, 
P <0.05), ~15% were attenuated, and ~13% were further suppressed 
(Supplementary Fig. 6a). Gene set enrichment analysis (GSEA) 
showed that IRE1α abrogation resulted in alterations of multiple 
cellular-function and signaling pathways, including augmented IL-4 
stimulation of oxidative phosphorylation, enhanced IL-4 suppression 
of the Notch pathway, and attenuated cytokine and chemokine signal-
ing (Supplementary Fig. 6b). IRE1α ablation resulted in changes in 
the expression of a diversity of IL-4-regulated potential secretory pro-
teins, including cytokines, chemokines, growth factors and proteins 
implicated in tissue remodeling (Supplementary Fig. 6c). GSEA also 
revealed enhanced upregulation of most IL-4-induced M2-marker 
genes as a result of IRE1α deficiency (Fig. 7a). Moreover, motif analy-
sis identified a number of regulatory transcription factors involved in 
IL-4-induced gene expression programs, including the interferon reg-
ulatory factor (IRF) and Krüppel-like factor (KLF) family members, 
which were found to be influenced by IRE1α ablation. Alignment of 
the expression heat maps indicated that IL-4 upregulated the expres-
sion of Irf1, Irf4 and Klf4, whose expression was appreciably enhanced 
in Ern1f/f; Lyz2-Cre cells (Fig. 7b). Given that both IRF4 and KLF4 
have been shown to be the critical regulators of M2 polarization34–36, 
we examined their expression by quantitative RT–PCR. IRE1α abla-
tion, which abolished IL-4-induced changes in Xbp1 mRNA splicing 
and the expression of two RIDD-target genes22, Pmp22 and Hgsnat, 
significantly augmented IL-4 induction of both Irf4 and Klf4 expres-
sion in BMDMs (Fig. 7c) but exerted no effect on IL-4 upregulation 
of Pparg or Ppard, two other key regulators of M2 activation37,38. 
Therefore, the effects of IRE1α deficiency on Irf4 and Klf4 expression 
mirrored the effects on the two RIDD targets examined.

To determine whether IRE1α downregulated the expression of Irf4 
and Klf4 through a mechanism dependent on its RNase activity, we 
treated BMDMs with 4µ8C, a pharmacologic inhibitor of IRE1α’s 
RNase activity39,40. Although IL-4 stimulated IRE1α phosphoryla-
tion (Fig. 7d) as well as Xbp1 mRNA splicing (Fig. 7e), treatment 
with 4µ8C further enhanced IRE1α phosphorylation but effectively 
blocked Xbp1 mRNA splicing (Fig. 7d,e) and increased IL-4 induction 
of Ym-1 protein expression without affecting STAT6 phosphorylation 
(Fig. 7d). In contrast to its inhibitory effect on IL-4-induced Xbp1 
mRNA splicing, 4µ8C significantly enhanced IL-4 induction of Pmp22 
and Hgsnat as well as Irf4, Klf4 and other M2-marker genes (Fig. 7e). 
4µ8C’s augmentative effect on IL-4 upregulation of Irf4, Klf4 and Chil3 
was abolished in Ern1f/f; Lyz2-Cre BMDMs, thus indicating its specific 
action against IRE1α (Fig. 7f). These data suggested that IRE1α down-
regulates Irf4 and Klf4 expression and exerts its suppressive effect on 
M2 polarization, through a mechanism that requires its RNase activ-
ity but presumably not its Xbp1 mRNA splicing activity. To further 
confirm the involvement of the XBP1 pathway, we tested the effect of 
ectopic expression of the spliced, transcriptionally active form, XBP1s. 
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Figure 5  IRE1α deficiency reverses the M1–M2 imbalance of ATMs. (a,b) Ern1f/f; Lyz2-Cre and Ern1f/f mice were fed an NC (n = 8 per group) or HFD  
(n = 10 per group) for 16 weeks. (a) Serum concentrations of the indicated cytokines. N.D., not detected. (b) F4/80 IHC of epWAT sections (5 images 
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16 weeks (c–h, n = 5 per group; i–k, n = 8 per group; l,m, n = 5 per group). (c,d) Representative flow cytometry histograms from analysis of CD11b and 
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epWAT (l) and scWAT (m). α-tubulin is a loading control. Each lane represents a pooled sample from 5 mice analyzed in duplicate. Numerical values 
indicate the relative levels of Ym-1 protein and eIF2α phosphorylation (p-eIF2α/eIF2α ratio). Data are shown as mean ± s.e.m., *P < 0.05; **P < 0.01 
by two-tailed Student’s t test or two-way ANOVA.
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Lentiviral overexpression of XBP1s in BMDMs did not affect IL-4 
stimulation of STAT6 phosphorylation (Fig. 7g) or IL-4 induction of 
Irf4 or Klf4 (Supplementary Fig. 7a,b). However, flow cytometry of 
IL-4-stimulated, XBP1s-overexpressing BMDMs showed a signifi-
cant decrease (by ~29%) in CD11b+CD206+ M2-like cells (Fig. 7h),  
along with robust decreases in IL-4 induction of signature M2  
markers (Fig. 7i). Thus, XBP1s also contributes to IRE1α-mediated  
suppression of M2 polarization; however, whether this effect is 
achieved through its transcriptional activity or other actions remains 
to be determined. These results suggest that the IRE1α pathways, 
which are activated by IL-4 in macrophages, may constitute a negative 
feedback loop suppressing M2 polarization.

DISCUSSION
ER stress is thought to underlie the pathogenic progression of 
obesity, insulin resistance and type 2 diabetes41,42, but the precise 
physiological mechanisms connecting ER stress to metabolic dys-
functions are poorly understood. Here, our studies uncovered a key 
role of the macrophage IRE1α pathway in mediating metabolic ER 
stress-induced malfunction in both brown and beige fat, symptoms 
increasingly being recognized as a hallmark of the pathogenic devel-
opment of obesity and metabolic syndrome4,24. Our findings offer 
a new paradigm with respect to how metabolic ER stress disrupts 
glucose and energy metabolism: during overnutrition, obesogenic 
factors (for example, fatty acids and LPS) activate macrophage IRE1α, 
thus defining an intracellular context repressing M2 while enhancing 
M1 polarization; such an M1–M2 imbalance of ATMs in turn severely 
limits the energy utilization capacity of both brown and beige fat in 
addition to promoting insulin resistance.

Our results demonstrated that abrogation of myeloid IRE1α in mice 
results in a broad range of metabolically beneficial effects, particu-
larly robust augmentation of the thermogenic activity of both brown 
and beige fat. These metabolic phenotypes are largely ascribable to 
the functional changes in ATMs, i.e., the enhanced M2 activation 
of resident macrophages in both BAT and scWAT, which have been 
reported to secrete catecholamines that drive adaptive thermogene-
sis13,14. Indeed, we detected higher tissue content of norepinephrine in 
both BAT and scWAT from Ern1f/f; Lyz2-Cre mice; however, we can-
not exclude the possibility that macrophage IRE1α deficiency might 
directly affect the biosynthesis and/or secretion of catecholamines 
within ATMs or indirectly influence catecholamine release by local 
neurons in adipose tissue. In addition, other macrophage-derived 
factors affected by IRE1α ablation may also mediate the intercellular 
cross-talk between ATMs and adipocytes43, thereby leading to more 
robust activation of brown and beige fat. For instance, it remains to be 
defined which IRE1α-regulated secretory factors from M2-polarized 
ATMs may modulate the differentiation and thermogenic activation 
of beige adipocytes. Moreover, the augmentation of BAT activity and 
WAT browning as a result of the correction of the M1–M2 imbal-
ance of ATMs in Ern1f/f; Lyz2-Cre mice might directly contribute to 
improvements in insulin sensitivity and systemic glucose homeostasis 
in a manner independent of fat utilization23. With regard to the mech-
anisms by which IRE1α controls the shift in the M1–M2 polarization 
programs, it is likely that multiple regulatory modes exist, namely 
through IRE1α’s RIDD activity as well as XBP1s-dependent actions.

Notably, IRE1α was also partially ablated in neutrophils of Ern1f/f; 
Lyz2-Cre mice. Although the contribution of neutrophil IRE1α dur-
ing adipose inflammation has yet to be clarified, our results clearly 
demonstrated that specific depletion of ATMs abolished the augmen-
tative effects of myeloid IRE1α deficiency on the browning of scWAT. 
This finding strongly suggests that IRE1α ablation in macrophages, 

rather than in neutrophils, should account for most of the observed 
enhancement in energy expenditure and metabolic improvements. 
This possibility is consistent with findings from a report showing 
that changes in adipose neutrophils have no effect on adiposity after 
HFD feeding44. We also observed an unusual elevation of circulating 
IL-6, along with higher Il6 expression in white adipocytes of Ern1f/f; 
Lyz2-Cre mice. Given its demonstrated roles in activating brown and  
beige fat and in promoting M2 polarization of ATMs45,46, IL-6 may 
also be an important contributor to augmenting adaptive thermo-
genesis via a feed-forward loop, thereby further enhancing M2 
activation of ATMs in Ern1f/f; Lyz2-Cre mice. Currently, how IRE1α-
deficient ATMs communicate with adipocytes in increasing Il6  
expression, while decreasing that of other proinflammatory cytokines,  
remains enigmatic.

In short, our findings revealed that the macrophage IRE1α pathway 
is a crucial driver in metabolic ER stress and the promotion of energy 
imbalance and obesity. Blocking IRE1α causes profound alterations in 
the functional activities of macrophages, which may range beyond the 
shifting of oversimplified M1–M2 polarization states27. Nonetheless, 
targeted modulation of IRE1α activity in ATMs might open new ave-
nues for developing brown- and beige-fat-enhancing therapeutics to 
treat obesity and metabolic disease.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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